
 1

Infix and postfix expressions

In a postfix expression,

• an operator is written after its operands.
• the infix expression 2+3 is 23+ in postfix notation.
• For postfix expressions, operations are performed in the order in which they are

written (left to right).
• No parentheses are necessary. ‘
• the infix expression 2+3*4 is 234*+ in postfix notation
• the infix expression 3*4+2*5 translates to 34*25*+ in postfix notation.
• the infix expression 3*(4+2)*5 translates to 342+*5*

Evaluation of postfix expressions.

2+3*4 (infix) / 234*+ (postfix) expression. Notice:

• the operands (2,3,and 4) appear in the same order in both expressions.
• in the postfix version the operators (* and +) appear in the order in which they

are performed -- the multiplication before the addition
• writing the operators in the order in which they are performed makes postfix

expressions easy to evaluate using the following algorithm:

 1. scan the expression, left to right, until you encounter an operator, @
 (@ means + - * or /)
 2. Perform the operation @. The operands precede the operator
 3 4 + = 3+4= 7
 3. In the expression, replace @ and its operands with the computed value
 4. repeat 1-3 the process until no more operators exist.

 Look at 234*+.
 Here is the sequence of operations:

• 2 3 4 * + * is the first operator. Perform the operation 34*
• 2 12 + 3 4*is replaced by 12 , the value of 3*4

 + is next operator, perform 2 12+
• replace 2 12+ with 14. Done

 The value of the expression is 14. Another example, 3 4 * 2 5 * + which in infix
 notation is 3*4 + 2*5.

 3 4 * 2 5 * + * is the first operator 3 4 * is replaced by 12
 12 2 5 * + 2 5 * is replaced by 10
 12 10 + 12 10 + is replaced by 22
 22
Postfix notation does not require parentheses.

Evaluation of postfix with a stack"

• Scan the string left to right.
• When you encounter an operand push it on the stack;
• when you encounter an operator, pop the corresponding operands off the stack,
• perform the operation, and push the result back on the stack.

 2

• When you are finished scanning the expression, the final value remains on the
stack.

 For example, consider the postfix expression 234*+

 Input Stack (top is on the left)
 2 3 4 * + empty Push 2
 3 4 * + 2 Push 3
 4 * + 3 2 Push 4
 * + 4 3 2 Pop 4, pop 3, do 3 *4 , push 12
 + 12 2 Pop 12, Pop 2, do 2 + 12, push 14
 14

 Input Stack
 3 4 * 2 5 * + empty Push 3
 4 * 2 5 * + 3 Push 4
 * 2 5 * + 4 3 Pop 4, pop 3, do 3*4, Push 12
 2 5 * + 12 Push 2
 5 * + 2 12 Push 5
 * + 5 2 12 Pop 5, Pop 2, do 2*5, Push 10
 + 10 12 Pop 10, Pop 12 do 12 + 10, push 22
 22

Here is an algorithm to evaluate postfix expressions.

To eliminate some unnecessary and non-instructive details make a few simplifying
assumptions:
 1. all input numbers are in the form of single digits 0..9
 There is no whitespace in the input string. Thus 345+* is valid
 but 3 4 5 +* is not.

 2. the only operators allowed are the binary

 operators +,-,*, and /, where / signifies integer division.

 3. all input data is correct.

Thus a typical input string is 23*73/+, which in infix notation is 2*3 + 7/3 (value is 8).

 Making these assumptions, the algorithm for postfix evaluation is
 while characters remain in the postfix string
 1. read a character
 2. if the character is a digit, convert to int and push
 3. if the character is an operator
 pop the stack twice obtaining the two operands
 perform the operation
 push the result
 Pop the final value from the stack.

 3

How to convert Infix to postfix.

hHow do we convert it to postfix notation.
 For example, the infix expression (2+3)*(4+5) in postfix notation is 23+45+*
and the infix expression 2+3*4+5 in postfix notation is 234*+5+.

Also, since our four operators are left associative, 2 + 3 + 4 translates to 23+4+ and not
234++. While both of these postfix expressions evaluate to 7, the first is interpreted as
(2+3)+4 (correct) and the second as 2 + (3+4) (incorrect associativity). By ignoring the
associativity of operators, you could run into trouble with subtraction and division. The
infix expression 2-3+4 is evaluated as (2-3)+4 = (-1)+4 = 3. The correct postfix is 23-4+
and not 234+- (which is equivalent to 2- (3+4) and evaluates to -5).

 Once again, we can use a stack to facilitate the conversion of infix to postfix.
This time, however, we will use a stack of characters to store the operators in the
expression. To convert correctly formed infix expressions to postfix we will use the
following algorithm.

 While characters remain in the infix string
 1. read the next character in the infix string
 2. if the character is an operand, append the character to the postfix
 expression
 3. if the character is an operator @
 while the stack is not empty and an operator of greater or equal
 priority is on the stack
 pop the stack and append the operator to the postfix
 push @
 4. if the character is a left parenthesis (
 push the parenthesis onto the stack
 5. if the character is a right parenthesis)
 while the top of the stack is not a matching left parenthesis (
 pop the stack and append the operator to postfix
 pop the stack and discard the returned left parenthesis
 Pop any remaining items on the stack and append to postfix.

 4

Examples.
Input Stack Postfix
2*3 + 4*5 empty
*3+4*5 empty 2
3+4*5 * 2
+4*5 * 23
4*5 + 23*
*5 + 23*4
5 *+ 23*4
 *+ 23*45
 + 23*45*
 empty 23*45*+

Input Stack Postfix
2-3+4-5*6 empty
-3+4-5*6 empty 2
3+4-5*6 - 2
+4-5*6 - 23
4-5*6 + 23-
-5*6 + 23-4
5*6 - 23-4+
*6 - 23-4+5
6 *- 23-4+5
 *- 23-4+56
 - 23-4+56*
 empty 23-4+56*-

Input Stack Postfix
(2-3+4)*(5+6*7) empty
2-3+4)*(5+6*7) (
-3+4)*(5+6*7) (2
3+4)*(5+6*7) (- 2
+4)*(5+6*7) (- 23
4)*(5+6*7) (+ 23-
)*(5+6*7) (+ 23-4
*(5+6*7) empty 23-4+
(5+6*7) * 23-4+
5+6*7) (* 23-4+
+6*7) (* 23-4+5
6*7) +(* 23-4+5
7) +(23-4+56
7) *+(* 23-4+56
) *+(* 23-4+567
 * 23-4+567*+
 empty 23-4+567*+*

